ROBOT DRIVING PRACTICE

Let’s play with a very talented Etch-a-Sketch!
Locate and click on the file "Microworlds Pro".  You should see the following screen. 
Note the names of the parts of the screen.


The picture in the center of the screen is the Logo turtle, a little guy we will teach to do all kinds of things.
Why a Turtle?

In the mid-sixties, Seymor Papert had a problem.  He wanted to devise a computerized teaching tool based on Piaget's theories of learning.  As you may recall, Piaget's theories are based on the use of concrete objects as tools for learning.  

Papert originally designed a robot to assist students in learning geometry.  The remotely controlled robot in the shape of a turtle moved along a floor covered with paper and dragged a pen.  By directing the turtle to move forward or backward a specified number of steps, and to turn right or left a specified number of degrees, the robot would draw geometric shapes on the floor.  However, Papert still had a problem.  There were very few schools with a spare room to dedicate to a robot turtle, so Papert kept trying.  Eventually the LOGO computer language was created, and the turtle evolved into a unique shape on the computer screen

This "turtle" on the screen can still "drag a pen" and can assist students in learning geometry.  

DRIVING THE TURTLE
To draw on the computer screen, the turtle must move forward or backwards a specified number of steps.  
You must give the turtle specific directions in turtle talk.
FD 50 moves the turtle Forward 50 turtle steps.
BK 20 moves the turtle Backward 50 turtle steps.
(NOTE: A space and then a number must always follow the FD and BK commands.)

Next, we want also need to be able to tell the turtle to turn right or left.
You must tell it which direction to turn and then also provide the angle of rotation.
RT 90 moves the turtle Right 50 degrees (clockwise).
LT 45 moves the turtle Left 50 degrees (counter clockwise).
SEND THE TURTLE AROUND THE BLOCK

Now, try to use the above commands to draw a square.
Sometimes it gets tiring writing the same commands over and over. Try typing this.

REPEAT 4 [FD 50 RT 90]

MOVING THE TURTLE AROUND

In Logo, the graphics screen is laid out like the Cartesian coordinate system familiar to you from mathematics classes.  
This contrasts with other languages like BASIC and Pascal that define the 0,0 point as the upper left corner of the screen.    

As you can see below, 0,0 in Logo marks the center of the screen (also known as HOME).  
In fact, typing HOME moves the turtle to the center of the page to [0 0] pointing up.
The graphics screen in has the following dimensions:





[0  212]



[-370  0] 
  [0  0] 

[370  0]





[0  -212]

You can move the turtle to specific coordinates on the screen by using:

SETPOS [x y]  will move the turtle to coordinates (x,y) (x = column / y = row) e.g. SETPOS [100 100]
If the turtle's pen is down when you use one of the previous commands, a line will be drawn from its current position to the new one.  To keep from drawing a line, remember to use PU first.
TURTLE COSTUMES

To find the numbers for specific costumes, click on the tab labeled "Graphics" on the bottom right of the screen. 
You will see a palette of icons. When you click on the icons, you see the name and number of the icon at the 
bottom of the screen.  For example, click one on the car and look at the bottom of the screen.
SETSH 11 or SETSH “CAR will change the turtle’s costume to a car.  

You can also change the size of the turtle’s shape. Sets the size of the turtle. 
The original size is 40 and the minimum and maximum sizes are 5 and 160, respectively. 
SETSIZE 100 makes the turtle’s costume grow.

You can also make the turtle appear and disappear.

ST stands for Show Turtle. Shows the current turtle. 
HT stands for Hide Turtle. Hides the current turtle. 

TURTLE TRAILS
The turtle draws when it moves.  That is because the turtle has a pen.  
There are some commands you can use to control the pen.  
PU stands for “Pen Up.”  The turtle moves but does not leave a line.

PD stands for “Pen Down.”  The turtle now leaves a line in its path.
You can change the line color that the turtle leaves in its path.  
If the turtle has its original shape, it changes color to show the pen color. 
The input can be the name of a color or a number. The original pen color is 9, which is back.   
The turtle also knows the names of some colors, but they must be preceded by a quote mark.
SETC 15  or SETC “Red 
To find the numbers for specific colors, click on the tab labeled "Graphics" on the bottom right of the screen. 
You will see a palette of colors. When you click on the colors, you see the number of the color to the left.  
Here are some of the most common colors:
0 White
5 Grey
9 Black
15 Red
25 Orange
35 Brown
45 Yellow
55 Green
65 Lime
75 Turquoise
85 Cyan
105 Blue
115 Violet
125 Magenta
135 Pink


You can also change the white background to other colors.

SETBG 105 changes the background color to blue.
ERRASING TURTLE TRAILS
Remember HOME sends the turtle to [0 0]  without erasing any graphics on the screen.

CLEAN clears the graphics without changing any turtle position.

CG stands for clear graphics and clears the page and returns the current turtle to HOME at [0 0].
TURTLE MEMORIES (TO & END)

In Logo, programs are called procedures.  A procedure consists of three parts:
1.
A title line consisting of the command word TO followed by a name.

2.
The body of the procedure - the sequence of Logo commands.

3.
The word END to indicate the last line of the procedure.

Click on to the tab area labeled Procedures located on the right side of the screen. 

Now, let's try a little program.  Add this procedure. Type the following:

TO CIRCLE
REPEAT 360 [FD 1 RT 1]

END

Procedure CIRCLE is now defined.  It is now a little program you can use.

Click in the command center and type CIRCLE.

Notice this procedure makes a circle by drawing a whole lot of very tiny little lines.
Now try this one!  Hit return and begin this one a few lines after the last procedure you typed.

TO COLORS

HOME

SETC 0 FD 10 SETC 1 FD 10 SETC 2 FD 10

SETC 3 FD 20 SETC 4 FD 20 SETC 5 FD 20

SETC 6 FD 10 SETC 7 FD 10 SETC 8 FD 10

SETC 9 FD 20 SETC 10 FD 20 SETC 11 FD 20

END
CONGRATULATIONS! You have successfully written your first Logo procedures!
GOING FURTHER
Congratulations, you have now taken your first steps to learning Logo.

Now that you know some basics, click on the "?" or use the "help" menu to learn much more!

Now here is your final challenge:

Have a friend draw a maze on an overhead.

Make sure it fits within the turtle’s space on the screen (called the page).

Tape the maze over the monitor.

Create a procedure to navigate the maze.
ADVANCED CHALLENGE # 1—PLAYING AROUND

Just for fun practice….

Try making some different shapes (rectangle, triangle, octagon)

Try these examples and see what happens:

CG PD REPEAT 8 [FD 50 RT 45]

CG REPEAT 18 [FD 45 BK 30 RT 20]

CG RT 45 REPEAT 5 [FD 15 RT 90 FD 15 LT 90]

Compare the next three statements. The results can be useful for animating turtles:

CG FD 100

CG REPEAT 100 [FT 1]

CG REPEAT 200 [FD .5]
Figure out what PE does?  Hint Draw over other lines and see what happens.

Try these driving challenges:

Get the turtle to the edge of the screen in one command.

Write a procedure to drive the turtle to draw a border around the very edge of the screen.

Here are some more fun procedures to try:

TO SUN

   ST PD SETPENSIZE 2

   SETC 25

   REPEAT 18 [FD 5 LT 90 FD 10 BK 10 RT 90 RT 20]

END
ST STAR

   SETC 95

   REPEAT 5 [FD 40 RT 144]

END

ADVANCED CHALLENGE # 2—CALLING AND REPEATING PROCEDURES FROM PROCEDURES
Logo is a procedural language.  It is procedural in that Logo programs are composed of procedures.   You can combine simple Logo commands (procedures called primitives) to essentially build up the Logo command set with commands (procedures) of your own making.  The net result is that you can build on what you have done to create ever more complex creations.  This characteristic is what makes Logo a deceptively powerful language.

Here is a demonstration of how Logo allows you to call another procedure from within a procedure to create more complex procedures.   Be sure that you have a procedure in memory by typing square.  Now type in the following procedure:

TO FOURSQUARE

HOME SQUARE RT 90 SQUARE RT 90 SQUARE RT 90 SQUARE

END
Run this procedure and see what happens.  When you run FOURSQUARE, it calls SQUARE four separate times.  

This is a very powerful feature of Logo, one which allows you to inter-relate a number of separate Logo procedures into one cohesive unit.

Now, type 

REPEAT 4 [SQUARE RT 90]  and press RETURN.  

This will cause SQUARE to draw four times.  REPEAT is a way of "looping!"  Type 

REPEAT 100 [SQUARE RT 60]
If you don't want to see all 100 squares, use Control-G.  This will stop the program.  

Use Control-G anytime to stop something in Logo.
ADVANCED CHALLENGE # 3—VARIABLES IN LOGO (USE :NAME)
Like most computer languages, Logo allows you to use variables in procedures.  For example, you can use a variable to make squares of different sizes:

TO SQUAREV :SIDE

REPEAT 4 [FD :SIDE RT 90]

END

In this procedure, :SIDE is the variable.  Variables in Logo are always denoted with a colon (:) and a name.  As noted before, spacing is very important.  There should not be a space between the colon and the name of the variable, but there must be a space between the procedure name and the variable.  

To use this procedure, type a number after the procedure name.  Enter SQUAREV 30 to get a square with sides of length 30 or enter SQUAREV 60 to get a square of side length 60.  The number you enter is assigned to the variable :SIDE when the procedure runs.  Type in this procedure and experiment creating different size boxes.  Use CS before each trial to clear the screen, or let the patterns overlap if you wish.  You might also try entering SQUAREV with no value after it; you will see that you get an error message indicating that you do not have enough inputs.  

Variable procedures expect appropriate values to be entered.

The procedure above uses a single variable, :SIDE.  But, you can also have procedures with more than one variable.  Extra variables are simply added to the expression using spaces as separators.  For example, a polygon procedure could be created by using two variables, one for side length and one for angle:

TO RECTANGLE :LENGTH :WIDTH

To use a procedure like this, two values must be entered, in the correct order, such as:  RECTANGLE 50 90  to create a rectangle of side length 50 and width 90.

Now try to write a procedure to make an equilateral triangle of variable length side.  Call it TRIVAR.  Then write the procedure that will make a rectangle that allows you to change the length of the sides on the rectangle.  Name it RECVAR.  

REMEMBER: Use two variables - one for width and one for length.

ADVANCED CHALLENGE # 4—MAKING A SPIROGRAPH AND BEYOND, CLASSIC RECURSION
Experiment with creating each of the following procedures and playing with varying parts of them.
TO SQUARE

FORWARD 100
RIGHT 90
SQUARE

END
Now try this:
SQUARE

------

TO VARY.SQUARE :SIDE
FORWARD :SIDE
RIGHT 90 
VARY.SQUARE :SIDE

END
Now try this:
VARY.SQUARE 50

------

TO POLY :SIDE :ANGLE
FORWARD :SIDE
RIGHT :ANGLE
POLY :SIDE :ANGLE

END
Now try this:
POLY 50 120

------

TO POLYSPI :SIDE :ANGLE :CHANGE
FORWARD :SIDE
RIGHT :ANGLE
POLYSPI :SIDE :CHANGE :ANGLE :CHANGE
END
Now try this:
POLYSPI 10 90 5

For more review and interesting twists on this idea please visit:

http://www.cs.berkeley.edu/~bh/v1ch10/turtle.html

